Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
AIDS Behav ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38478323

RESUMO

Tobacco smoking is highly prevalent among people living with HIV (PLWH), yet there is a lack of data on smoking behaviours and effective treatments in this population. Understanding factors influencing tobacco smoking and cessation is crucial to guide the design of effective interventions. This systematic review and meta-analysis of studies conducted in both high-income (HICs) and low- and middle-income countries (LMICs) synthesised existing evidence on associated factors of smoking and cessation behaviour among PLWH. Male gender, substance use, and loneliness were positively associated with current smoking and negatively associated with smoking abstinence. The association of depression with current smoking and lower abstinence rates were observed only in HICs. The review did not identify randomised controlled trials conducted in LMICs. Findings indicate the need to integrate smoking cessation interventions with mental health and substance use services, provide greater social support, and address other comorbid conditions as part of a comprehensive approach to treating tobacco use in this population. Consistent support from health providers trained to provide advice and treatment options is also an important component of treatment for PLWH engaged in care, especially in LMICs.

2.
J Neural Transm (Vienna) ; 131(1): 83-94, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37500938

RESUMO

Epidemiological studies and clinical observations suggest that nicotine, a major contributor of the global burden of disease, acts in a partially sex specific manner. Still, preclinical research has primarily been conducted in males. More research is thus required to define the effects displayed by nicotine on the female brain. To this end, female rats received 15 injections of either nicotine (0.36mg/kg) or saline, over a 3-week period and were then followed for up to 3 months. Behavioral effects of nicotine were assessed using locomotor activity measurements and elevated plus maze, while neurophysiological changes were monitored using ex vivo electrophysiological field potential recordings conducted in subregions of the dorsal and ventral striatum. Behavioral assessments demonstrated a robust sensitization to the locomotor stimulatory properties of nicotine, but monitored behaviors on the elevated plus maze were not affected during acute (24 h) or protracted (3 months) withdrawal. Electrophysiological recordings revealed a selective increase in excitatory neurotransmission in the nucleus accumbens shell and dorsomedial striatum during acute withdrawal. Importantly, accumbal neuroadaptations in nicotine-treated rats correlated with locomotor behavior, supporting a role for the nucleus accumbens in behavioral sensitization. While no sustained neuroadaptations were observed following 3 months withdrawal, there was an overall trend towards reduced inhibitory tone. Together, these findings suggest that nicotine produces selective transformations of striatal brain circuits that may drive specific behaviors associated with nicotine exposure. Furthermore, our observations suggest that sex-specificity should be considered when evaluating long-term effects by nicotine on the brain.


Assuntos
Corpo Estriado , Nicotina , Masculino , Ratos , Feminino , Animais , Nicotina/farmacologia , Ratos Wistar , Neostriado , Transmissão Sináptica/fisiologia
3.
Addict Biol ; 28(12): e13349, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38017639

RESUMO

Alcohol use disorder is one of the major psychiatric disorders worldwide, and there are many factors and effects contributing to the disorder, for example, the experience of ethanol reward. The rewarding and reinforcing properties of ethanol have been linked to activation of the mesolimbic dopamine system, an effect that appears to involve glycine receptors (GlyRs) in the nucleus accumbens. On which neuronal subtypes these receptors are located is, however, not known. The aim of this study was to explore the role of GlyRs on cholinergic interneurons (CIN) in sustaining extracellular dopamine levels and in ethanol-induced dopamine release. To this end, CIN were ablated by anti-choline acetyltransferase-saporin administered locally in the nucleus accumbens of male Wistar rats. Changes in dopamine levels induced by ablation, ethanol and/or a GlyR antagonist were monitored using in vivo microdialysis. The GlyRs antagonist strychnine depressed extracellular dopamine in a similar manner independent on local ablation, suggesting that GlyRs on CIN are not important for sustaining the extracellular dopamine tone. However, a low concentration of strychnine hampered ethanol-induced dopamine release in sham-treated animals, whilst no reduction was seen in ablated animals, suggesting that GlyRs located on CIN are involved in ethanol-induced dopamine release. Further, in ablated rats, ethanol-induced increases of the extracellular levels of the GlyR agonists glycine and taurine were attenuated. In conclusion, this study suggests that CIN are not important for GlyR-mediated regulation of basal dopamine output, but that CIN ablation blunts the ethanol-induced dopamine release, putatively by reducing the release of GlyR agonists.


Assuntos
Receptores de Glicina , Estricnina , Humanos , Ratos , Masculino , Animais , Receptores de Glicina/metabolismo , Ratos Wistar , Estricnina/farmacologia , Etanol/farmacologia , Núcleo Accumbens , Dopamina , Interneurônios/metabolismo , Colinérgicos/farmacologia , Microdiálise
4.
eNeuro ; 10(2)2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36754627

RESUMO

Nicotine robustly sustains smoking behavior by acting as a primary reinforcer and by enhancing the incentive salience of the nicotine-associated stimuli. The motivational effects produced by environmental cues associated with nicotine delivery can progressively manifest during abstinence resulting in reinstatement of nicotine seeking. However, how the activity in reward neuronal circuits is transformed during abstinence-induced nicotine seeking is not yet fully understood. In here we used a contingent nicotine and saline control self-administration model to disentangle the contribution of cue-elicited seeking responding for nicotine after drug abstinence in male Wistar rats. Using ex vivo electrophysiological recordings and a network analysis approach, we defined temporal and brain-region specific amygdalo-striatal glutamatergic alterations that occur during nicotine abstinence. The results from this study provide critical evidence indicating a persistent hypoglutamatergic state within the amygdalo-striatal neurocircuitry over protracted nicotine abstinence. During abstinence-induced nicotine seeking, electrophysiological recordings showed progressive neuroadaptations in dorsal and ventral striatum already at 14-d abstinence while neuroadaptations in subregions of the amygdala emerged only after 28-d abstinence. The observed neuroadaptations pointed to a brain network involving the amygdala and the dorsolateral striatum (DLS) to be implied in cue-induced reinstatement of nicotine seeking. Together these data suggest long-lasting neuroadaptations that might reflect neuroplastic changes responsible to abstinence-induced nicotine craving. Neurophysiological transformations were detected within a time window that allows therapeutic intervention advancing clinical development of preventive strategies in nicotine addiction.


Assuntos
Nicotina , Tabagismo , Ratos , Animais , Masculino , Nicotina/farmacologia , Ratos Wistar , Fissura/fisiologia , Tonsila do Cerebelo , Autoadministração , Sinais (Psicologia) , Comportamento de Procura de Droga , Extinção Psicológica
5.
Front Mol Neurosci ; 16: 1105388, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36760603

RESUMO

Introduction: Using yoked animals as the control when monitoring operant drug-self-administration is considered the golden standard. However, instrumental learning per se recruits several neurocircuits that may produce distinct or overlapping neuroadaptations with drugs of abuse. The aim of this project was to assess if contingent responding for nicotine or saline in the presence of a light stimulus as a conditioned reinforcer is associated with sustained neurophysiological adaptations in the nucleus accumbens shell (nAcS), a brain region repeatedly associated with reward related behaviors. Methods: To this end, nicotine-or saline-administrating rats and yoked-saline stimulus-unpaired training conditions were assessed in operant boxes over four consecutive weeks. After four additional weeks of home cage forced abstinence and subsequent cue reinforced responding under extinction conditions, ex vivo electrophysiology was performed in the nAcS medium spiny neurons (MSNs). Results: Whole cell recordings conducted in voltage and current-clamp mode showed that excitatory synapses in the nAcS were altered after prolonged forced abstinence from nicotine self-administration. We observed an increase in sEPSC amplitude in animals with a history of contingent nicotine SA potentially indicating higher excitability of accumbal MSNs, which was further supported by current clamp recordings. Interestingly no sustained neuroadaptations were elicited in saline exposed rats from nicotine associated visual cues compared to the yoked controls. Conclusion: The data presented here indicate that nicotine self-administration produces sustained neuroadaptations in the nAcS while operant responding driven by nicotine visual stimuli has no long-term effects on MSNs in nAcS.

6.
Front Mol Neurosci ; 15: 1104648, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36710931

RESUMO

Introduction: Tobacco use is in part a gendered activity, yet neurobiological studies outlining the effect by nicotine on the female brain are scarce. The aim of this study was to outline acute and sub-chronic effects by nicotine on the female rat brain, with special emphasis on neurotransmission and synaptic plasticity in the dorsolateral striatum (DLS), a key brain region with respect to the formation of habits. Methods: In vivo microdialysis and ex vivo electrophysiology were performed in nicotine naïve female Wistar rats, and following sub-chronic nicotine exposure (0.36 mg/kg free base, 15 injections). Locomotor behavior was assessed at the first and last drug-exposure. Results: Acute exposure to nicotine ex vivo depresses excitatory neurotransmission by reducing the probability of transmitter release. Bath applied nicotine furthermore facilitated long-term synaptic depression induced by high frequency stimulation (HFS-LTD). The cannabinoid 1 receptor (CB1R) agonist WIN55,212-2 produced a robust synaptic depression of evoked potentials, and HFS-LTD was blocked by the CB1R antagonist AM251, suggesting that HFS-LTD in the female rat DLS is endocannabinoid mediated. Sub-chronic exposure to nicotine in vivo produced behavioral sensitization and electrophysiological recordings performed after 2-8 days abstinence revealed a sustained depression of evoked population spike amplitudes in the DLS, with no concomitant change in paired pulse ratio. Rats receiving sub-chronic nicotine exposure further demonstrated an increased neurophysiological responsiveness to nicotine with respect to both dopaminergic- and glutamatergic signaling. However, a tolerance towards the plasticity facilitating property of bath applied nicotine was developed during sub-chronic nicotine exposure in vivo. In addition, the dopamine D2 receptor agonist quinpirole selectively facilitate HFS-LTD in slices from nicotine naïve rats, suggesting that the tolerance may be associated with changes in dopaminergic signaling. Conclusion: Nicotine produces acute and sustained effects on striatal neurotransmission and synaptic plasticity in the female rat brain, which may contribute to the establishment of persistent nicotine taking habits.

7.
Tob Prev Cessat ; 7: 62, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34712864

RESUMO

INTRODUCTION: The aim of this systematic review and meta-analysis was to assess the association between e-cigarette use and subsequent smoking cessation in cohort studies and randomized controlled trials (RCT). METHODS: A systematic literature search was finalized 11 November 2019 using EMBASE, Cochrane Library, Scopus, PubMed Health, NICE evidence search, PROSPERO, CRD, PsycInfo, and PubMed including Medline. Inclusion criteria were: reporting empirical results; longitudinal observational design with a minimum of 3 months of follow-up; including general population samples; and allowing for comparison between users and non-users of e-cigarettes. Studies rated as having high risk of bias were excluded. The procedures described by PRISMA were followed, and the quality of evidence was rated using GRADE. RESULTS: Twenty-eight longitudinal, peer-reviewed publications from 26 cohort studies, and eight publications from seven RCTs assessing the association between e-cigarette use and smoking cessation were included in this review. A random-effects meta-analysis based on 39147 participants in cohort studies showed a pooled unadjusted odds ratio (OR) for smoking cessation among baseline e-cigarette users compared with baseline non-users of 0.97 (95% CI: 0.67-1.40), while the adjusted OR was 0.90 (95% CI: 0.63-1.27). The pooled odds ratio for smoking cessation in RCTs was 1.78 (95% CI: 1.41-2.25). The evidence for cohort studies was graded as very low and for RCTs as low. CONCLUSIONS: We did not find quality evidence for an association between e-cigarette use and smoking cessation. Although RCTs tended to support a more positive association between e-cigarette use and smoking cessation than the cohort studies, the grading of evidence was consistently low.

8.
ERJ Open Res ; 7(3)2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34262971

RESUMO

OBJECTIVE: The aim of this systematic review and meta-analysis was to assess the association between e-cigarette use and subsequent initiation or recurrence of cigarette smoking. DATA SOURCES: A systematic literature search was finalised on 11 November 2019 using PubMed (including MEDLINE), EMBASE, Cochrane Library, Scopus, PubMed Health, NICE Evidence Search, PROSPERO, CRD and PsycInfo. STUDY SELECTION: Studies were included if meeting the following criteria: reporting empirical results; longitudinal observational design with a minimum of 3 months of follow-up; including general population samples; allowing for the comparison between users and nonusers of e-cigarettes. Studies rated as having high risk of bias were excluded. Studies were independently assessed by at least two authors. The procedures described by PRISMA were followed, and the quality of evidence was rated using GRADE. DATA SYNTHESIS: 30 longitudinal studies from 22 different cohorts assessing e-cigarette use among nonsmokers or never-smokers at baseline, and subsequent use of cigarette smoking at follow-up, were included in this review. A random-effects meta-analysis based on 89 076 participants showed a pooled unadjusted odds ratio (OR) of cigarette smoking among baseline nonsmoker e-cigarette users compared with nonusers of 4.68 (CI 3.64-6.02), while the adjusted OR was 3.37 (CI 2.68-4.24). These results were consistent irrespective of whether the outcome was measured as ever-smoking or as past 30-day smoking. The evidence was graded as moderate. CONCLUSIONS: Use of e-cigarettes may predict the initiation or recurrence of cigarette smoking.

9.
Alcohol Alcohol ; 56(2): 127-138, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33479741

RESUMO

AIMS: Despite a general decline in tobacco use in the last decades, the prevalence of tobacco smoking in individuals with alcohol use disorder (AUD) remains substantial (45-50%). Importantly, the co-use of both substances potentiates the adverse effects, making it a significant public health problem. Substantial evidence suggests that AUD and Tobacco use disorder (TUD) may share common mechanisms. Targeting these mechanisms may therefore provide more effective therapy. Numerous studies describe a potential role of the endogenous opioid system in both AUD and TUD. Reviewing this literature, we aim to evaluate the efficacy of molecules that target the opioid system as promising therapeutic interventions for treating alcohol and tobacco co-use disorders. METHODS: We provide a synthesis of the current epidemiological knowledge of alcohol and tobacco co-use disorders. We evaluate clinical and preclinical research that focuses on the regulation of the endogenous opioid system in alcohol, nicotine, and their interactions. RESULTS: The epidemiological data confirm that smoking stimulates heavy drinking and facilitates alcohol craving. Pharmacological findings suggest that treatments that are efficacious in the dual addiction provide a beneficial treatment outcome in comorbid AUD and TUD. In this regard, MOP, DOP and NOP-receptor antagonists show promising results, while the findings prompt caution when considering KOP-receptor antagonists as a treatment option in alcohol and tobacco co-use disorders. CONCLUSIONS: Existing literature suggests a role of the opioid system in sustaining the high comorbidity rates of AUD and TUD. Molecules targeting opioid receptors may therefore represent promising therapeutic interventions in 'heavy drinking smokers.'


Assuntos
Alcoolismo/tratamento farmacológico , Alcoolismo/epidemiologia , Terapia de Alvo Molecular , Antagonistas de Entorpecentes/uso terapêutico , Receptores Opioides/uso terapêutico , Tabagismo/epidemiologia , Animais , Comorbidade , Etanol/efeitos adversos , Humanos , Camundongos , Nicotina/efeitos adversos , Ratos
10.
Addict Biol ; 26(3): e12959, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32789970

RESUMO

Alcohol use disorder is a chronic, relapsing brain disorder causing substantial morbidity and mortality. Cholinergic interneurons (CIN) within the nucleus accumbens (nAc) have been suggested to exert a regulatory impact on dopamine (DA) neurotransmission locally, and defects in CIN have been implied in several psychiatric disorders. The aim of this study was to investigate the role of CIN in regulation of basal extracellular levels of DA and in modulation of nAc DA release following ethanol administration locally within the nAc of male Wistar rats. Using reversed in vivo microdialysis, the acetylcholinesterase inhibitor physostigmine was administered locally in the nAc followed by addition of either the muscarinic acetylcholine (ACh) receptor antagonist scopolamine or the nicotinic ACh receptor antagonist mecamylamine. Further, ethanol was locally perfused in the nAc following pretreatment with scopolamine and/or mecamylamine. Lastly, ethanol was administered locally into the nAc of animals with accumbal CIN-ablation induced by anticholine acetyl transferase-saporin. Physostigmine increased accumbal DA levels via activation of muscarinic ACh receptors. Neither scopolamine and/or mecamylamine nor CIN-ablation altered basal DA levels, suggesting that extracellular DA levels are not tonically controlled by ACh in the nAc. In contrast, ethanol-induced DA elevation was prevented following coadministration of scopolamine and mecamylamine and blunted in CIN-ablated animals, suggesting involvement of CIN-ACh in ethanol-mediated DA signaling. The data presented in this study suggest that basal extracellular levels of DA within the nAc are not sustained by ACh, whereas accumbal CIN-ACh is involved in mediating ethanol-induced DA release.


Assuntos
Acetilcolina/farmacologia , Dopamina/metabolismo , Etanol/farmacologia , Núcleo Accumbens/efeitos dos fármacos , Área Tegmentar Ventral/efeitos dos fármacos , Animais , Antagonistas Colinérgicos/farmacologia , Masculino , Mecamilamina/farmacologia , Microdiálise , Antagonistas Nicotínicos/farmacologia , Núcleo Accumbens/metabolismo , Ratos , Ratos Wistar , Escopolamina/farmacologia , Área Tegmentar Ventral/metabolismo
11.
Biol Psychiatry ; 89(4): 398-406, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33160605

RESUMO

BACKGROUND: Alcohol addiction is characterized by persistent neuroadaptations in brain structures involved in motivation, emotion, and decision making, including the medial prefrontal cortex, the nucleus accumbens, and the amygdala. We previously reported that induction of alcohol dependence was associated with long-term changes in the expression of genes involved in neurotransmitter release. Specifically, Syt1, which plays a key role in neurotransmitter release and neuronal functions, was downregulated. Here, we therefore examined the role of Syt1 in alcohol-associated behaviors in rats. METHODS: We evaluated the effect of Syt1 downregulation using an adeno-associated virus (AAV) containing a short hairpin RNA against Syt1. Cre-dependent Syt1 was also used in combination with an rAAV2 retro-Cre virus to assess circuit-specific effects of Syt1 knockdown (KD). RESULTS: Alcohol-induced downregulation of Syt1 is specific to the prelimbic cortex (PL), and KD of Syt1 in the PL resulted in escalated alcohol consumption, increased motivation to consume alcohol, and increased alcohol drinking despite negative consequences ("compulsivity"). Syt1 KD in the PL altered the excitation/inhibition balance in the basolateral amygdala, while the nucleus accumbens core was unaffected. Accordingly, a projection-specific Syt1 KD in the PL-basolateral amygdala projection was sufficient to increase compulsive alcohol drinking, while a KD of Syt1 restricted to PL-nucleus accumbens core projecting neurons had no effect on tested alcohol-related behaviors. CONCLUSIONS: Together, these data suggest that dysregulation of Syt1 is an important mechanism in long-term neuroadaptations observed after a history of alcohol dependence, and that Syt1 regulates alcohol-related behaviors in part by affecting a PL-basolateral amygdala brain circuit.


Assuntos
Córtex Pré-Frontal , Sinaptotagmina I , Tonsila do Cerebelo , Animais , Regulação para Baixo , Etanol , Núcleo Accumbens , Ratos , Sinaptotagmina I/genética
12.
Addict Biol ; 25(5): e12807, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-31293045

RESUMO

Alcohol use disorder (AUD) is detrimental to health and causes preterm death. Unfortunately, available pharmacological and nonpharmacological treatments have small effect sizes, and improved treatments are needed. Smoking and AUD share heritability and are pharmacologically associated, since drug-induced dopamine (DA) output in nucleus accumbens (nAc) involves nicotinic acetylcholine receptors (nAChRs) in both cases. Smoking therapy agents, such as the partial nAChR agonist varenicline or the DA/noradrenaline transporter inhibitor bupropion, could potentially also be used for AUD. To investigate this hypothesis, the effects of varenicline, bupropion, or a combination of the two on nAc DA levels, ethanol intake, and the alcohol deprivation effect (ADE) were examined. In vivo microdialysis showed that varenicline (1.5 mg/kg) and bupropion (2.5, 5, or 10 mg/kg) elevated nAc DA levels and that the combination produced additive effects. Five days treatment with varenicline, bupropion, or the combination did not suppress ethanol consumption, as compared with vehicle-treated control. However, combined administration of varenicline and bupropion completely blocked the ADE when readministering ethanol following 14 days of abstinence. Since ADE is considered highly predictive for the clinical outcome in man, our data suggest that the combination of varenicline and bupropion could be a promising treatment for AUD.


Assuntos
Transtornos Relacionados ao Uso de Álcool/prevenção & controle , Bupropiona/farmacologia , Dopamina/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Agentes de Cessação do Hábito de Fumar/farmacologia , Vareniclina/farmacologia , Animais , Modelos Animais de Doenças , Quimioterapia Combinada , Masculino , Ratos , Ratos Wistar
13.
Addict Biol ; 25(3): e12757, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-30969011

RESUMO

Nicotine is recognized as one of the most addictive drugs, which in part could be attributed to progressive neuroadaptations and rewiring of dorsal striatal circuits. Since motor-skill learning produces neuroplasticity in the same circuits, we postulate that rotarod training could be sufficient to block nicotine-induced rewiring and thereby prevent long-lasting impairments of neuronal functioning. To test this hypothesis, Wistar rats were subjected to 15 days of treatment with either nicotine (0.36 mg/kg) or vehicle. After treatment, a subset of animals was trained on the rotarod. Ex vivo electrophysiology was performed 1 week after the nicotine treatment period and after up to 3 months of withdrawal to define neurophysiological transformations in circuits of the striatum and amygdala. Our data demonstrate that nicotine alters striatal neurotransmission in a distinct temporal and spatial sequence, where acute transformations are initiated in dorsomedial striatum (DMS) and nucleus accumbens (nAc) core. Following 3 months of withdrawal, synaptic plasticity in the form of endocannabinoid-mediated long-term depression (eCB-LTD) is impaired in the dorsolateral striatum (DLS), and neurotransmission is altered in DLS, nAc shell, and the central nucleus of the amygdala (CeA). Training on the rotarod, performed after nicotine treatment, blocks neurophysiological transformations in striatal subregions, and prevents nicotine-induced impairment of eCB-LTD. These datasets suggest that nicotine-induced rewiring of striatal circuits can be extinguished by other behaviors that induce neuroplasticity. It remains to be determined if motor-skill training could be used to prevent escalating patterns of drug use in experienced users or facilitate the recovery from addiction.


Assuntos
Aprendizagem/efeitos dos fármacos , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Destreza Motora , Neostriado/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Núcleo Accumbens/efeitos dos fármacos , Animais , Corpo Estriado/efeitos dos fármacos , Endocanabinoides , Masculino , Neostriado/metabolismo , Neurônios/metabolismo , Técnicas de Patch-Clamp , Ratos , Ratos Wistar , Teste de Desempenho do Rota-Rod , Transmissão Sináptica/efeitos dos fármacos
14.
Addict Biol ; 24(3): 355-363, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-29292565

RESUMO

The endocannabinoid (eCB) system modulates several phenomena related to addictive behaviors, and drug-induced changes in eCB signaling have been postulated to be important mediators of physiological and pathological reward-related synaptic plasticity. Here, we studied eCB-mediated long-term depression (eCB-LTD) in the dorsolateral striatum, a brain region critical for acquisition of habitual and automatic behavior. We report that nicotine differentially affects ex vivo eCB signaling depending on previous exposure in vivo. In the nicotine-naïve brain, nicotine facilitates eCB-signaling and LTD, whereas tolerance develops to this facilitating effect after subchronic exposure in vivo. In the end, a progressive impairment of eCB-induced LTD is established after protracted withdrawal from nicotine. Endocannabinoid-LTD is reinstated 6 months after the last drug injection, but a brief period of nicotine re-exposure is sufficient to yet again impair eCB-signaling. LTD induced by the cannabinoid 1 receptor agonist WIN55,212-2 is not affected, suggesting that nicotine modulates eCB production or release. Nicotine-induced facilitation of eCB-LTD is occluded by the dopamine D2 receptor agonist quinpirole, and by the muscarinic acetylcholine receptor antagonist scopolamine. In addition, the same compounds restore eCB-LTD during protracted withdrawal. Nicotine may thus modulate eCB-signaling by affecting dopaminergic and cholinergic neurotransmission in a long-lasting manner. Overall, the data presented here suggest that nicotine facilitates eCB-LTD in the initial phase, which putatively could promote neurophysiological and behavioral adaptations to the drug. Protracted withdrawal, however, impairs eCB-LTD, which may influence or affect the ability to maintain cessation.


Assuntos
Corpo Estriado/efeitos dos fármacos , Endocanabinoides/farmacologia , Estimulantes Ganglionares/farmacologia , Plasticidade Neuronal/efeitos dos fármacos , Nicotina/farmacologia , Análise de Variância , Animais , Masculino , Ratos Wistar , Receptores de Dopamina D2/efeitos dos fármacos , Reforço Psicológico
15.
J Neurosci ; 38(29): 6597-6607, 2018 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-29941445

RESUMO

The prevalence of nicotine dependence is higher than that for any other substance abuse disorder; still, the underlying mechanisms are not fully established. To this end, we studied acute effects by nicotine on neurotransmission in the dorsolateral striatum, a key brain region with respect to the formation of habits. Electrophysiological recordings in acutely isolated brain slices from rodent showed that nicotine (10 nm to 10 µm) produced an LTD of evoked field potentials. Current-clamp recordings revealed no significant effect by nicotine on membrane voltage or action potential frequency, indicating that the effect by nicotine is primarily synaptic. Nicotine did not modulate sIPSCs, or the connectivity between fast-spiking interneurons and medium spiny neurons, as assessed by whole-cell recordings combined with optogenetics. However, the frequency of sEPSCs was significantly depressed by nicotine. The effect by nicotine was mimicked by agonists targeting α7- or α4-containing nAChRs and blocked in slices pretreated with a mixture of antagonists targeting these receptor subtypes. Nicotine-induced LTD was furthermore inhibited by dopamine D2 receptor antagonist and occluded by D2 receptor agonist. In addition, modulation of cholinergic neurotransmission suppressed the responding to nicotine, which might reflect upon the postulated role for nAChRs as a presynaptic filter to differentially govern dopamine release depending on neuronal activity. Nicotine-induced suppression of excitatory inputs onto medium spiny neurons may promote nicotine-induced locomotor stimulation and putatively initiate neuroadaptations that could contribute to the transition toward compulsive drug taking.SIGNIFICANCE STATEMENT To decrease smoking, prevalence factors that may contribute to the development of nicotine addiction need to be identified. The data presented here show that nicotine suppresses striatal neurotransmission by selectively reducing the frequency of excitatory inputs to medium spiny neurons (MSNs) while rendering excitability, inhibitory neurotransmission, and fast-spiking interneuron-MSN connectivity unaltered. In addition, we show that the effect displayed by nicotine outlasts the presence of the drug, which could be fundamental for the addictive properties of nicotine. Considering the inhibitory tone displayed by MSNs on dopaminergic cell bodies and local terminals, nicotine-induced long-lasting depression of striatal output could play a role in behavioral transformations associated with nicotine use, and putatively elicit neuroadaptations underlying compulsive drug-seeking habits.


Assuntos
Corpo Estriado/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Receptores Nicotínicos/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Animais , Corpo Estriado/fisiologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Neurônios/fisiologia , Ratos , Ratos Wistar , Transmissão Sináptica/fisiologia , Tabagismo/metabolismo , Tabagismo/fisiopatologia
16.
Neuropharmacology ; 128: 86-95, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28986279

RESUMO

Due to the highly addictive properties of nicotine, a low percentage of users successfully maintain cessation for longer periods of time. This might be linked to neuroadaptations elicited by the drug, and understanding progressive changes in neuronal function might provide critical insight into nicotine addiction. We have previously shown that neurotransmission in the nucleus accumbens (nAc), a key brain region with respect to drug reinforcement and relapse, is suppressed for as long as seven months after a brief period of nicotine treatment. Studies were therefore performed to define the temporal properties of these effects, and to assess behavioral correlates to altered neurotransmission. Ex vivo electrophysiology revealed progressive depression of synaptic efficacy in the nAc of rats previously receiving nicotine. In addition, following three months of nicotine withdrawal, the responses to GABAA receptor modulating drugs were blunted together with downregulation of several GABAA receptor subunits. In correlation to reduced accumbal neurotransmission, a reduced anxiety-like behavior; assessed in the elevated plus-maze and marble burying tests, were identified in animals pre-treated with nicotine. Lastly, to test the causal relationship between suppressed excitability in the nAc and reduced anxiety-like behavior, rats received local administration of diazepam in the nAc while monitoring behavioral effects on the elevated plus-maze. These results show that nicotine produces long-lasting changes in the GABAergic system, which are observed first after extended withdrawal. Our data also suggest that nicotine produces a progressive suppression of accumbal excitability, which could result in behavioral alterations that may have implications for further drug intake.


Assuntos
Ansiedade/etiologia , Nicotina/efeitos adversos , Núcleo Accumbens/fisiologia , Síndrome de Abstinência a Substâncias/complicações , Transmissão Sináptica/fisiologia , Animais , Ansiolíticos/uso terapêutico , Ansiedade/tratamento farmacológico , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Espinhas Dendríticas/efeitos dos fármacos , Espinhas Dendríticas/patologia , Diazepam/uso terapêutico , Modelos Animais de Doenças , Potenciais Evocados/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Locomoção/efeitos dos fármacos , Locomoção/fisiologia , Masculino , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Neurônios/ultraestrutura , Núcleo Accumbens/citologia , Núcleo Accumbens/efeitos dos fármacos , Técnicas de Patch-Clamp , Ratos , Ratos Wistar , Receptores de GABA/genética , Receptores de GABA/metabolismo , Transmissão Sináptica/efeitos dos fármacos
17.
Neuropsychopharmacology ; 41(13): 3051-3059, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27388328

RESUMO

Drug addiction has been conceptualized as maladaptive recruitment of integrative circuits coursing through the striatum, facilitating drug-seeking and drug-taking behavior. The aim of this study was to define temporal neuroadaptations in striatal subregions initiated by 3 weeks of intermittent nicotine exposure followed by protracted abstinence. Enhanced rearing activity was assessed in motor activity boxes as a measurement of behavioral change induced by nicotine (0.36 mg/kg), whereas electrophysiological field potential recordings were performed to evaluate treatment effects on neuronal activity. Dopamine receptor mRNA expression was quantified by qPCR, and nicotine-induced dopamine release was measured in striatal subregions using in vivo microdialysis. Golgi staining was performed to assess nicotine-induced changes in spine density of medium spiny neurons. The data presented here show that a brief period of nicotine exposure followed by abstinence leads to temporal changes in synaptic efficacy, dopamine receptor expression, and spine density in a subregion-specific manner. Nicotine may thus initiate a reorganization of striatal circuits that continues to develop despite protracted abstinence. We also show that the response to nicotine is modulated in previously exposed rats even after 6 months of abstinence. The data presented here suggests that, even though not self-administered, nicotine may produce progressive neuronal alterations in brain regions associated with goal-directed and habitual performance, which might contribute to the development of compulsive drug seeking and the increased vulnerability to relapse, which are hallmarks of drug addiction.


Assuntos
Corpo Estriado/efeitos dos fármacos , Rede Nervosa/efeitos dos fármacos , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Tabagismo/patologia , Animais , Modelos Animais de Doenças , Dopamina/metabolismo , Objetivos , Técnicas In Vitro , Locomoção/efeitos dos fármacos , Masculino , Microdiálise , Rede Nervosa/ultraestrutura , Técnicas de Patch-Clamp , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Receptores Dopaminérgicos/genética , Receptores Dopaminérgicos/metabolismo , Coloração pela Prata , Estatísticas não Paramétricas , Fatores de Tempo
18.
Addict Biol ; 21(2): 397-406, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25581387

RESUMO

Tobacco use is often associated with long-term addiction as well as high risk of relapse following cessation. This is suggestive of persistent neural adaptations, but little is known about the long-lasting effects of nicotine on neural circuits. In order to investigate the long-term effects of nicotine exposure, Wistar rats were treated for 3 weeks with nicotine (0.36 mg/kg), and the duration of behavioral and neurophysiological adaptations was evaluated 7 months later. We found that increased drug-induced locomotion persisted 7 months after the initial behavioral sensitization. In vitro analysis of synaptic activity in the core and shell of the nucleus accumbens (nAc) revealed a decrease in input/output function in both regions of nicotine-treated rats as compared to vehicle-treated control rats. In addition, administration of the dopamine D2 receptor agonist quinpirole (5 µM) significantly increased evoked population spike amplitude in the nAc shell of nicotine-treated rats as compared to vehicle-treated control rats. To test whether nicotine exposure creates long-lasting malleable circuits, animals were re-exposed to nicotine 7 months after the initial exposure. This treatment revealed an increased sensitivity to nicotine among animals previously exposed to nicotine, with higher nicotine-induced locomotion responses than observed initially. In vitro electrophysiological recordings in re-exposed rats detected an increased sensitivity to dopamine D2 receptor activation. These results suggest that nicotine produces persistent neural adaptations that make the system sensitive and receptive to future nicotine re-exposure.


Assuntos
Comportamento Animal/efeitos dos fármacos , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Potenciais de Ação/efeitos dos fármacos , Animais , Antagonistas dos Receptores de Dopamina D2/farmacologia , Esquema de Medicação , Complexo de Golgi/efeitos dos fármacos , Locomoção/efeitos dos fármacos , Masculino , Núcleo Accumbens/efeitos dos fármacos , Quimpirol/farmacologia , Ratos Wistar , Coluna Vertebral/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos
19.
Neuropharmacology ; 82: 69-75, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24686030

RESUMO

The ability of drugs of abuse to increase mesolimbic levels of dopamine is a characteristic associated with their rewarding effects. Exactly how these effects are produced by different substances is not as well characterised. Our previous work in rats has demonstrated that accumbal glycine receptors (GlyRs) are involved in mediating the dopamine-activating effects of ethanol, and in modulating ethanol intake. In this study the investigation of GlyR involvement was extended to include several different drugs of abuse. By using microdialysis and electrophysiology we compared effects of addictive drugs, with and without the GlyR antagonist strychnine, on dopamine levels and neurotransmission in nucleus accumbens. The dopamine-increasing effect of systemic ethanol and the drug-induced change in neurotransmission in vitro, as measured by microdialysis and field potential recordings, were dependent on GlyRs in nAc. Accumbal GlyRs were also involved in the actions of tetrahydrocannabinol and nicotine, but not in those of cocaine or morphine. These data indicate that accumbal GlyRs play a key role in ethanol-induced dopamine activation and contribute also to that of cannabinoids and nicotine.


Assuntos
Dopamina/metabolismo , Drogas Ilícitas/farmacologia , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/fisiopatologia , Receptores de Glicina/metabolismo , Animais , Depressores do Sistema Nervoso Central/farmacologia , Cocaína/farmacologia , Inibidores da Captação de Dopamina/farmacologia , Dronabinol/farmacologia , Etanol/farmacologia , Glicinérgicos/farmacologia , Alucinógenos/farmacologia , Masculino , Microdiálise , Microeletrodos , Morfina/farmacologia , Entorpecentes/farmacologia , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Ratos Wistar , Receptores de Glicina/antagonistas & inibidores , Estricnina/farmacologia , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA